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Time Asymmetry and Quantum Theory
of Resonances and Decay
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These notes review a consistent and exact theory of quantum resonances and decay.
Such a theory does not exist in the framework of traditional quantum mechanics and
Dirac’s formulation. But most of its ingredients have been familiar entities, like the
Gamow vectors, the Lippmann—Schwinger (in- and out-plane wave) kets, the Breit—
Wigner (Lorentzian) resonance amplitude, the analytically contirsiecdatrix, and

its resonance poles. However, there are inconsistencies and problems with these in-
gredients: exponential catastrophe, deviations from the exponential law, causality, and
recently the ambiguity of the mass and width definition for relativistic resonances. To
overcome these problems the above entities will be appropriately defined (as mathe-
matical idealizations). For this purpose we change just one axiom (Hilbert space and/or
asymptotic completeness) to a new axiom which distinguishes between (in-)states and
(out)observables using Hardy spaces. Then we obtain a consistent quantum theory of
scattering and decay which has the Weisskopf-Wigner methods of standard textbooks
as an approximation. But it also leads to time-asymmetric semigroup evolution in place
of the usual, reversible, unitary group evolution. This, however, can be interpreted as
causality for the Born probabilities. Thus we obtain a theoretical framework for the
resonance and decay phenomena which is a natural extension of traditional quantum
mechanics and possesses the same arrow-of-time as classical electrodynamics. When
extended to the relativistic domain, it provides an unambiguous definition for the mass
and width of theZ-boson and other relativistic resonances.

KEY WORDS: time asymmetry; quantum theory; decay.

1. INTRODUCTION

Time Asymmetric Quantum Theory (TAQT) differs in its basic hypothesis
very little from the traditional axioms of quantum mechanics and relativistic quan-
tum field theory. The mathematical tools are linear operators in linear scalear prod-
uct spaces, in general infinite dimensional ones. The physical quantities measured
are the Born probabilitieB for an observable (operatod)in a state (operatokV
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with the simplest case given by = | ) (v |, W = |¢){¢], and

P) = [(¥IsM)? = (¥ (t)lg)]°. @)

The dynamical evolution is described by the Sxhinger equation fo(t) or
by the Heisenberg equation fgr(t). For infinite dimensional spaces one needs
completeness (i.e., converging sequences have limit elements in the space) and
for convergence one uses in traditional quantum mechanics the convergence with
respect to the norm and then obtains the Hilbert spéce

Though not part of the traditional axioms these basic hypotheses are usually
augmented by the Dirac kets, e.g., of the Hamiltorilan and Dirac’s basis vector
expansion

=3 [QEEJ i e J anio) = [IENED. @

Jriam

The j, j3, n are discrete quantum numbers which we often ignore. Further
one makes some assumptions about the analyticity c-hatrix eIemenS}”/(E)
as a function of the complex energy, which have been conjectured from solutions
of the Schodinger equation for certain potentials.

For stationary systems (e.g., atoms, nuclei, relativistic particles for which
all excited states are considered as stalilee traditional assumptions give an
adequate description. Augmenting these by the theory of (tempered) distributions,
which extends the Hilbert spadé to a Gelfand triplet or Rigged Hilbert Space
(RHS),

& CHC DX, 3

where® is the Schwartz space, one can give a mathematical meaning to Dirac kets:
|E) € ¥*, i.e., as functionals on the Schwartz space. Then the nuclear spectral
theorem provides the mathematical proof for the Dirac’s basis vector expansion
(2). The traditional axiom, that the set of the physical stgtagd that of observ-
ablesyr are given byH or by @, leads to the theory of stable states and reversible
(unitary) time evolution. In contrast, quasistable states, like resonances in a scat-
tering experiment or decaying states in the decay experiment, are connected with
an asymmetric or “irreversible” time evolution (The irreversible nature of quantum
mechanical decay has been mentioned in textbooks and lecture notes. For example,
Antoniou, 1992; Antoniou and Prigogine, 1993; Cohen-Tannaudji, 1977; Doeb-
ner et al, 1992; Goldberger and Watson, 1964; Haag, 1990, 1997; Lee, 1981;
Merzabacher, 1970; van Kamper, 2002). Thus they require a TAQT and in the ab-
sence of such a theory their description can only be approximate and must contain
some contradictions.
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2. WIDTH AND LIFETIME

Resonances appear in scattering experiments when the scattering cross sec-
tion, o;(E), is fit to a Breit-Wigner energy distribution and a slowly varying
backgroundB(E)

r
oi(E)~ Ia(E)?, a =aj" + B(E)= ——"—- +B(E), (4a)
E—(Er—13)
where the Breit—-Wigner (also called Lorentzian) is
BW My .
aBW=__ " - 0<E<o (4b)
DT E-(Ee-i5)
and wheren denotes the species quantum numbers of various final states

(channels).

Resonances are characterized by the resonance ébgfgyresonance mass
M in the relativistic case) and by the resonance widthThe widthT" can be
determined experimentally from (4a) wh&iEg (and likewisel'’/M) is of the
order 101...104

Decaying stategP(t) are observed in proces® — n wheren are various
decay products (or decay channels) described by the outvegioihe decaying
stateD is characterized byH, 1/t = R) (or by (M, 1/t = R)) wherer is the
lifetime (in the rest frame) andR is the total initial decay rate. The lifetine
is measured by fitting the counting ratﬁ,A’z’;(t), for any decay producy to
the exponential decay law for the partial decay iajét) (the intensity of the;
emission as a function of time).

1 AN,
N At

~ R,(t) = R0 e =R, (0e R, R=>R(0). (5

AN, (t) is the number of the decay produgtsegistered by the-detector during
the time intervalAt aroundt;.

In the theory the decay rat&(t) are probabilities per unit time and the prob-
abilities P,(t) are theoretically given by the Born probabilities of the observable
A, in the decaying statg®(t),

P,(t) = Tr(A, 16 @) @P M) = (W, lgP M) for A, = [¥,) (¥l (6)

The partial decay rates (also called partial widths when multipliedh dy, =
hR,(0)) are (theoretically) the time derivatives of the probabilifR)

d

R(t) = 5 Pul0). ™

The experimental definition (5) of the lifetime or of the total initial decay
rateR(0) = R= % using (5), is based on the validity of the exponential law for the
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decay probabilityP,(t). Though the exponential decay law (5) is time-honored,
one often talks of deviations from the exponential decay law.

The reason for this concern with deviations from the exponential is a mathe-
matical theorem (Kalfin, 1957, 1958) which states that there is no vector in Hilbert
space that has an exact exponential time evolution. That means if one wants the
exponential law of (5) to hold foR,(t) given by (7) one cannot take fgi°(t) a
Hilbert space vector. One has to take a vegiBr— 1 with the properties

Hy ¢ = zy®, z=<E—ii> (8)
27
yO(t) = et yS(0) = e y°(0). 9)

This vectony©, which needs to be properly defined, is called a Gamow vector.

The phenomenology of quantum physical decay, in particular the identity of
the total initial decay rat® = }_ R, with the inverse lifetime!, R = £, depends
upon the validity of the exponential law. The identfy R, = % would not hold
if there were deviations from the exponential law.

For the initial decay rateR,(0) in (5) the Dirac Golden Rule (Fermi, 1950)
had been used with great success. It rel®g®) approximately to the matrix
element|(E, |V|¢P)|? of the interaction HamiltonialV = H, — Ho. Using for
#P the Gamow vectors© of (9) one can derive in an heuristic manner, using
the Lippmann—Schwinger equation, an exact Golden Rule (Bohm, 1979, 1994)
which gives for the decay rate (7) the exponential time dependence of (5). Thus
for the exponential law which is the basis of concepts like lifetime and partial rate,
a Gamow vector (8) and (9) needs to be used, not a Hilbert space yéttor

Another question is the relation & = % to the widthI" which appears in
the Breit-Wigner of (4).

The inverse lifetime 1t of the exponential decay rates (5) and the wiith
of the Breit—-Wigner energy distribution of (4) are conceptually and experimen-
tally different quantities. Resonances of a scattering process are characterized by
the resonance enerdyr (or resonance madd in the relativistic case) and the
resonance widtl'. The widthI™ can be determined experimentally from (4) when
I'/Eg (and likewisd" /M) are of the order 10~ . . . 1074, and one often quotes the
calculated quantity/ ' = ¢3¢ as the lifetime of the resonance. Decaying states
of the decay process are characterized by the lifetiraad the energ¥p. The
lifetime ¢ = 1/R can be determined experimentally from (5) FdR/Er < 10710,
and one often calls the calculated quanfif§’® = hR = h/z with  measured by
(5), the width of the decaying particle, ahdR, = I'; is usually called the partial
width.

The question therefore arises, are resonances and decaying particles different
physical entities or are they only quantitatively different in the magnitudes of
I'/E and hR/E with resonance width® and decay ratdR just being different
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appearances of the same physical entity? In other wordss4shR? Or is a
resonance conceptually different from a decaying particle?

Many people think that resonances and decaying states are the same; espe-
cially in nonrelativistic quantum physics.

A contrary opinion predominates for the relativistic case: Resonances are
complicated objects and cannot be described simply as states characterized by two
numbers M, I'). They have a more complicated lineshape or at least an energy-
dependent widtl' (Ecy) with thewidth defined ag = I'(Ecy = M). Acommon
assumption is that one has
1
=3

This relation is based on the Weisskopf—Wigner approximation (Weisskopf
and Wigner, 1930) of which M. Levy wrote in 1959 “There does not exish
rigorous theory to which these various methods [Weisskopf-Wigner] can be con-
sidered as approximations” (Levy, 1959). Still the belief in the equality of the
resonance width" and the decay rat® has been so thoroughly accepted that
the terms width and rate are used interchangeably. A rigorous theory is needed to
obtain the lifetime-width relation (10) as an exact result. We shall show that this
can be done by separating the resonance part in an appropriate way from the non-
resonant background not only in the nonrelativistic case but also in a relativistic
theory of resonances and decay.

(10)

h
— T
r

3. TIME ASYMMETRY FROM SIMPLE MATHEMATICS

Sincel” is measured by the Breit—-Wigner cross-section of (4) anddqual to
Rif the exponential law holds) is measured by the exponential (partial) decay rates
(5), the theory that one has to find must relate a Breit—-Wigner ampl‘etﬁél(eE)
with a Gamow vector . Before this can be done, both these quantities need to
be mathematically defined, since @f with properties (8) and (9) cannot be a
Hilbert space vector and (2). the phenomenological Breit—Wigner (4b) for which
the energy extends over the “physical” values & < oo cannot be related to an
exponential are (Erdelgt al,, 1954)

i oo —iwt

2 ) YT En T2

— Q(t) eI(ER_I FR/Z)t

e 'ErlgTERl/Z for t > 0
- {0 fort<o (119
and
i % . _
o (En = TTw/2) =/(; dte 'Erlg TER2det - _ oo < < 00, (11b)
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This means that mathematics requires that the energgnge over the entire
real axis—oo < w < +o0 and the values of time range only fromx0t < +o0.
In contrast, in the traditional quantum theory in Hilbert space the time evolves
over —oo < t < +o00 and energy (spectrum of the Hamiltoni&h) is bounded
from below 0< w < +o00. The usual textbook derivation of the exponential time
evolution for vectors with the Breit—Wigner energy distributions is one example
of the “approximate” character of quantum mechanical derivations for scattering
and decay phenomena.

The mathematical result (11) shows us which way we have to go to obtain
a mathematical theory of quantum mechanical scattering and decay: the energy
must be continued from the “physical” values<OE < oo of (4b) into the com-
plex energy plane, in particular to the negative values of (11b) and the exponential
time evolution (11a) is asymmetric, it starts at a “beginnihgz to = 0. Thus
using the simple but exact mathematical relation (11), not the usual approxima-
tions of textbooks, shows already what many have felt about decay processes
(Antoniou, 1992; Antoniou and prigorine, 1993; Cohen-Tannoatl,, 1997;
Haag, 1990, 1997; Lee, 1981; Merzabcher, 1970; van Kampen, 2002), namely
that the time evolution is asymmetric> t, and the decay is an irreversible
process.

4. DISTINCT SPACES FOR STATES AND OBSERVABLES—TAQT

To define the Gamow vectar® as energy eigenkets of a self-adjoint Hamil-
tonianH, but with complex generalized eigenvalze- E — i Zir one cannot use
the RHS (3) of Schwartz type for which the energy wave functions in (2) are
the Schwartz space functiop$E) = (E|¢) € S. Not all Schwartz space function
can be analytically continued to complex energy plane. Since we want complex
energy values, we need kets and wave functions that can be analytically con-
tinued into the complex energy plane. As a guide to find the space of analytic
wave functions we use the well-known empirical concepts of quantum scatter-
ing. The Lippmann-Schwinger ket&") and |E~) are the eigenvectors of the
(self-adjoint) HamiltoniarH which fulfill the boundary conditions given by the
Lippmann-Schwinger (integral) equation (Newton, 1982). They have already en-
ergy values with “infitesimal imaginary partET) = |Esi¢), € > 0, this means
the complex conjugate of the energy wave functiogh€¥) = (f |[Exi.) = fF(E)
can be continued into the lower (fo) and upper (for") complex energy plane,
or fF(E) = f¥(E) = (TE| f) can be continued into the upper (foy and lower
(for ) energy plane. From this we conjecture that the energy wave functions for
the outgoing particles™ E|y~) and the energy wave functions of the prepared
in-states(™ E|v ") form two distinct spaces of Schwartz functions which can be
analytically continued into the upper and lower complex energy plane, respectively.
To make this into a precise hypothesis, we postulate
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The set of prepared in-state wave functions on the positive real semEagi® ;-
{(*Elph)} = SNH2 |g, are smooth Hardy functioRsf the lower energy plane.

(12)
The set of observed (detector defined) out-particles wave fundtioi§¢ )} = SN
Hi |r, are smooth Hardy functions of the upper complex energy plane. +)(12

One can show that two spaces of Hardy functiSs H2 |z, andS N'H2 |r, (on
the positive real energy axi®, ) form together withL2(R, ) a pair of RHSs, the
Gadella RHSs (Gadella, 1983)

SNHi|g, C LA(Ry) C (SNHE|R,)™ (137)

This means that the set of outparticle “state” vectgrsis given by the basis
vector expansion

= [ aEE L E ) (14)
J,n

using the set of energy wave functiork, j, n|v~) = (T E|y ™) thatfulfills (12,).
The set of these vectofs~ form an abstract linear space which we ahll. This
is the abstract Hardy space of vecters, ¥, , ... which is mathematically (alge-
braically and topologically (has the same meaning of convergence)) equivalent to
the function space (13. S N 'H2 |, is called a realization of the abstract space
&, in the same way ak?(R.) is the realization of the abstract Hilbert spdge
by the space of Lebesgue square integrable functions.

Equivalently, the set of the vectogs™ given by

o' =3 [ dEIE ") E e (15)
i

using the set of energy wave functiofisE, j, nl¢™) € S N H?|R, form an ab-
stract linear topological space which we call. Therewith one has a pair of RHSs
of Hardy type

®; CH C P (16:)

The same Hilbert space is equipped with two different Hardy spaces and their
duals®} (space of antilinear continuous fuctionals). The Lippmann-Schwinger
kets are then mathematically defined as functionals.

If one has only an RHS of Schwartz type (3) then one has just one kind of
vectors connected with the experimental apparatus, the Schwartz ®pddes
gives us no possibility to distinguish between the set of veetowehich represent
a state|¢)(¢| prepared by a preparation apparatus like the prepared in-state of
a (resonance) scattering experiment and the set of vegtevhich represent an

2Hardy functions are analytic, sufficiently decreasing functions on the semiplane (&cdl1997,
Appendix).
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observablgy ) (y| which is registered by a detector like the out-particles (decay
products) of a resonance scattering experiment. The axiom of standard quantum
mechanics therefore states that the set of prepared in-states and the set of the
detected observables (or “out-states”) are both the same (asymptotic completeness)
and represented mathematically by the Schwartz sfpace

{set of prepared in-states}
= {set of registered outobservabl¢$ = & C H. a7

In its orthodox von Neumann form, this axiom even says that

{p} ={y)=H. (A7)

Since the out-states, e.g., the decay products, are specified by the detector
that registers them, they are really not states but observables. The new hypothesis
that we conjectured from the heuristic meaning of the Lippmann-Schwinger kets
distinguishes mathematically between states and observables. It postulates that
the set of prepared states, defined by the preparation apparatus (accelerator), is
described by

{pt)=®_CcH C > (18)

and the set of registered observables, defined by the registration apparatus (detec-
tor), is described by

Yy} =0, CHCD], (19)

where’H in (18) and (19) denotes the same Hilbert spacedutand &, are
distinct Hardy spaces which are dense in the saf{see (A-14) and (A-15)).

The Lippmann-Schwinger kets have now a precise mathematical meaning,
namely the solutions of the generalized (see (A-7)) eigenvalue equation

HIE, j,nT) = EIE, j, n%), 0> E < oo;
with the boundary condition |E, j, n*) € Y.  (20)

The space®} contain many more elements than the Lippmann-Schwinger kets
with real eigenvaluéE. In particular®’ contains the eigenkets

Hiz,...)=12lz,...7) formany zeC_, (22)

whereC_ denotes the lower complex semiplane (becausty —) is by (12.)
Hardy in the upper complex semipla@e and thugyr—|z~) = (~z|y~) is Hardy

in the lower complex semiplarf@_). For the complex semiplane in the definition

of the Hardy spaces (12 one takes the second (or higher) sheet of the Riemann
surface for theS-matrix, the sheet on which the resonance poles are located and
thezin (21) are the nonsingular points.
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The heuristic description of quantum scattering using Lippmann-Schwinger
kets therefore suggests that the axiom (17) (and in particular the Hilbert space
axiom (17%)) be replaced by a new axiom given by the hypotheses (18) and (19).
The new axiom distinguishes alsmthematicalljpetween prepared states defined
by a preparation apparatus (accelerator) and the registered observables defined by
the detector. This means that the set of in-stateé$ and the set of outobservables
{v*} of a scattering experiment adéferent(dense) subspaces of the same Hilbert
spaceH.

The hypotheses (18) and (19) are the only new basic assumption of TAQT, all
other axioms remain the same. In particular the dynamical equations are the same
as before. In the Schdinger picture the observables are kept time-independent
and the state vectar*(t) obeys the Scludinger equation

g (1)
ot
In the Heisenberg picture the state is kept time-independent and the observable
A(t), orinthe special casé = |y~ ) (¥~ |, the observable vectgr~(t) obeys the

Heisenberg equations

Y (1)
ot

The difference with the traditional theory comes from the solutions of the dynam-
ical equation due to the different boundary conditions. With the new Hardy space
boundary conditions (18) the solutions for the statés= ®_ are given by

ih

=Ho™(t), pT(t=to=0)=¢g € D_. (22)

ih

— —HY @), ¥ (t=to=0)=y; € . (23)

ot =e Mgt =Ul(t)p"; O<t< oo (24)

And with the boundary condition (19) for the observables e & the solutions
of (23) are given by

Yy ) =My =U )y 0<t< oo (25)

Thus in place of the unitary group solution withoo < t < 400, which one ob-

tains from the same dynamical Eqgs. (22) and (23) with the Hilbert space boundary
conditiony € H, ¢ € ‘H (Stone—von Neumann theorem) one obtains under the
new Hardy space boundary conditions (18) and (19) the semigroup solution (24)
and (25).

3Usually one reserves the word “observables” for operators [ke) (v, ) and mixtures thereof
swil [¥i )(¥]); here we will also call the vectong,” € @ observables. Precisely, the semigroup
generatoH = H. in (25) is the restriction of the self-adjoint operatéto the (dense ifi{) subspace
@, and the generatdd = H_ in (24) is the restriction oH to ®_. The same notation is used for
U (t). We often omit the subscripts of the operators which are the same as the subscripts of the spaces.
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This is a radically new result. Its implications, the time ordeting ty, have
been intuitively forseen by those not enamored with the Hilbert space &xiom
(Antoniou, 1992; Antoniou and Prigogine, 1993; Cohen-Tannoeiddl., 1977;
Feynman, 1948, Gell-Mann and Hartle, 1994, 1995; Haag, 1990, 1997; Lee, 1981,
Merzbacher, 1970; van Kampen, 2002). The Born probability for measuring the
observable) ~ in the statep™,

Po-(@T () = I(¥ ot )% = (¥~ (1)lp™)I? (26)

are predicted fot > to = 0 only. In the calculation (26) one can use either the
Schiodinger picture (24) or the Heisenberg picture (25).

With the interpretation (Feynman, 1948; Gell-Mann and Hartle, 1994, 1995)
thatty is the time at which the staig* has been created, the time asymmetry
(26) says that the observaljle—(t)) (v ~(t)| can be detected in the stage only
at timest after the state has been prepared. Thus the time asymmetry inherent in
the Hardy space axiom (18) and (19) is an expression of causality for the Born
probabilities.

With this interpretation, the asymmetric time evolution (24) and (25) that
follows from the Hardy space axiom (mathematically based on the Paley—Wiener
theorem for Hardy functions) appears quite acceptable and even welcome (Bohm,
1999; Gell-Mann and Hartle, 1994, 1995).

Historically, it was not the consideration of causality, but the desire to derive
the exponential law for resonances, that led to the Hardy spaces (H. Baumgartel,
personal communications, 1977) (Baumgartel, 1976; Bohm, 1978, 1981; Duren,
1970). This will be discussed next.

5. UNIFYING RESONANCES AND DECAYING STATES

The Born probability amplitudey_|¢™) to register the observable™ =
W) ~|, ¥~ € @y, inthe statept € ®_ is expressed using the standard notions
of scattering theory as the matrix element of the S-operator:

(w—|¢+) — (Q_w°“t|9+¢i”) — (¢OUt| S¢in) — (WOUtW’Ou‘)- (27)
This is essentially the statement of standard scattering theory (Bohm, 1979,
Newton, 1982; Weinberg, 1995) except that there one speaks of out-¢tates

instead of outobservableg~ = Q~°". But Born probabilities correlate ob-
servables and states, not states and other states, and the detector in scattering

4The possibility of two distinct spaces for the prepared stases and for the registered observables
{v~} is already contained in the historical paper of Feynman (1948). He distinguishes between the
state at times$’ < to which is defined by the preparation (our prepared siatésand what he calls
“state characteristic of the experiment” at titffe> to (our registered observablgs ). He mentions
the possibility{ys ~} # {¢ T} in Footnote 14, attributing it to H. Snyder, but does not consider it. We
implement this possibility by the choice of the two Hardy spakesand®., .
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experiments is not built to the specifications of prepared states, but to the spec-
ification of the particles to be registered in the outregion, which are therefore
observables. The matrix element_(j¢*) can now be expressed using (14) and
(15) and with the use of symmetries (angular momentum, energy conservation)
one obtains

(W 1o") = Z/ dE(WIE, |, IS (E)CE, L nls"),  (28)

mn'sj

wheres}7 = (TE, j, nlE, j, ng) is the Smatrix element which is related to the
scattering amplitude of (4) by

S’ =2ia’(E)+1 (elastic channel fromo — 1), (29a)
S/ = 2ia/(E) (reaction channel fromg — 7). (29b)

Under the new hypothesis (12the energy wave functions are not only smooth
square integrable functions but also analytic in such a way that the integral in the
S-matrix element (28) can be continued into the lower half plane of the second
sheet. The contour integration can therefore be deformed from the continuous
spectrum ofH (0 < E < oo, the scattering energies) into a contour around the
resonance pole and some background integral that correspoBda {d) (Bohm
et al, 1997).

In the integrals along the circles around each resonance poleatEr —
i [y /2 of (28) one uses the expansion

(i)

. R
S = Ri(z—zg) +---
J Z_ZR+R0+ 1(Z2 - Zr) +

and obtains for thé-th pole term of  —, ¢™):

(W 16" pate zf 2097 12)S@) (2l
G

- dziv— 1z RV +o1 bt
—yiq 2y |z >z—zR< Zlp™)

= —27iRO(y~|zg ) (Tzr 1¢™) (30a)
= / " QBB Eh (30b)
T E-2zr .

In this derivation one has made use of the Hardy property of the wave functions
(y~|z7), (Tz|¢p™) and used the Cauchy theorem for (30a) and the Titschmarsh
theorem for (30b). Comparing (30a) with (30b) this leads to the following definition
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of the Gamow vectorzg, ) as functionals over aly =~ € @

. o . too N

(v Izg) = Iﬂfg a2 '—/ de B e

«c Z—ZR 27 J ool E—-zg

The integral along the energy axis extends frem in the second sheet along the
upper rim of the second sheet4ex and the values along the cut0E < oo
are the physical scattering energies. Since the valuég ofE~) for negativeE
of Hardy functions are already determined by their values fer B < oo® the
values in (31) are determined from the scattering energies.

This means we have the following result (as a consequence of the Hardy
space axiom): if we replace the phenomenological Breit—-Wigner in (4b) which
is measured only for & E < oo by the “exact” Breit—-Wigner of (11) for which
the energy extend from-oo,; < E < oo, then one can associate to it an ideal
Gamow vectorzij, defined as the continuous superposition of the Lippmann-

Schwinger ketsE, j, ...”) with the “exact” Breit—Wigner as the wave functfon
of CE,j...1¥P)
r, .
aAVE) = —— = ¥V =vV2Tiz,j...7)
E—(Er—i%)
iv27T [T E,j...”
_! / delBl ) (g9
2 J_ s E—zr
.
—0)) < E < 400, ZRZER—IE.

In here the integral of (14) is extended from<OE < 400 t0 —oo < E +00

as in (11a). This “mistake” has already been done by Fermi (1932) to obtain
causality which otherwise would have been lost (Hegerfeldt, 1994). For the vector
wJ-G defined in (32)and only if the integral extends teoo|| , one can derive (using

the property of Hardy functions) that

I
(Hy, 198 = (v, [H|y®) = <ER —|§> (W, ly®) forall y, e o,

(33a)
whenH = Hp + V is self-adjoint (and semibounded). This justifies the notation
¥? =|Er—iT/2,],...7). In Dirac notation the arbitrary,,” € @, is omitted
and (33a) is written as

« r . T r .
H ER—|§,J,...>_<ER—|E>‘ER—|§,J,...> (33b)

5see Appendix of Bohm (1997), van Winter theorem.
6The normalization factoy/27 T is an inconsequential convention.
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Dirac also omitted thé& of the conjugate operatdt * which is uniquely defined
as the extension of the operatdi’ = H to & by the first equality in (33a),
cf. Appendix. The Gamow kdEgr — iI'/27) is thus something like a Dirac ket,
but even more so since it can have complex eigenvalaad zg. For Gamow
vector defined in (32) by the pole positiary is the position of thes-matrix pole
of the resonance in the lower half plane. Unlike the usual Dirac ket, which is
mathematically defined as a functional over the Schwartz sfpadhe Gamow
ket (32) is an element ob; D ®*. There are many more eigenkets (21) with
complex eigenvaluesin @7 ; Gamow vectors are the eigenkessociated to the
values g,, Zg,, . .. of (first-order)S-matrix poles

The Gamow vector with exact Breit—Wigner distribution defined by (32)
represents the state associated to the Breit—Wigner scattering amplitude without
the background Bf) of (4b); it thus represents the resonance pole. For this state
vector one derives (Bohm, 1978, 1981; Bokiral, 1997) the exponential time
evolution:

YO(t) = e Mty G = g Ertg=2ty G for t > 0 only. (34)

Formally (34) is just (33) applied in the exponent. But to prove (34) as a functional
equation, one has to show that

H 00 iHt /| — 1 E—
L[ e IED)

iHt  —o— _ 1
(€M7 zg) = e d E_ 2
P +o0 -E- —iEt .
= 2'—/ dE% =e "’ y~|zz) for t>0.
T J -0 — 4R

(35)

The latter equality follows only if foky ~|E~) € SN'H2 also(y~|E~)e Bt ¢

S NH2, and this is only the case far> 0. Thus for this derivation again the
mathematical properties of the Hardy functions are needed (Bohm, 1978, 1981;
Bohmet al, 1997) and the time asymmetry> 0 emerges as a consequence of
the axiom (18) and (19).

TheT in (34) is the same as tHein (32), that means it is the width of the
Breit—-Wigner used in fits of the crosssection (4) to the experimental cross-section
data. The comparison of (34) and (33) with (8) (9) shows Ihiatalso the inverse
lifetime determined from the fit of the decay rates to the exponential (5), if one
takes for the decaying stage® in (6) the Gamow vectovfjG defined in (32). In
contrast to the superposition (14) and (15) for ordinary vectorse @, the
integration in (32) extends overoo;; < E < oo and this is only possible ify®
is a functionahy ©(y ) = (¥~ |¥C) over the Hardy space)~ € ®.

The ideal Gamow vector in (32) with the “exact” Breit—Wigner energy dis-
tribution is therefore the state vector of the resonance per se and (34) shows that it
obeys an exact exponential decay law.
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The scattering amplitude, (E) need not just haveneBreit-Wigner; in fact
if there areN resonances a@r = Eg —iIi/2,i =1,..., N, in the j-th partial
wave, then one can show that tBenatrix element is given (also as a consequence
of the Hardy space axiom) by

| RO
n — —
2ia/(E) = Sf(E)_b(E)—i—Z E 7 (36)

whereb(E) = B(E)/(2i) is a background amplitude as in (4). Thus the scattering
amplitude into channe] is a superposition dil Breit—-Wigners. The interference
term that follows from (36) has been observed in several experiments (nuclear
physics (Nathaet al, 1975; von Brentano, 1996)the p — w system).

If there areN resonances in th¢-th partial wave, one also derives (from
the Hardy space axiom) for the prepared state vettoan alternate basis vector
expansion to the Dirac expansion (15). This is given by

. _ 2r .
0" =™+ Iz, b Jor, = SO0z, l0), (3T)
i
whereg is the functional onb>X = {y~} given by

—ool |
(W 1p") = /0 dE(W|ET)(FEl$T)S: (E)

+o00
_ /0 dE(y~|E7)("E|¢*)b(E). (38)

The last equality follows from the van Winter theorem and) is a (slowly
varying) function ofE uniquely determined b, (E) on the positive real axis
(Gadella, 1997). The vectors of (32, j, n~) are the Gamow vectors represent-
ing the resonances ak . The “complex basis vector expansion” (37) expresses
the prepared statg' as a superposition of the Gamow vectors plus some vector
#®9 given by (38). Herdo(E) = 2i B(E) (b(E) — 1 = 2i B(E) for elastic channel

n = no) is the phenomenological amplitu@®{ E) of (4).

This shows that to each Breit—Wigner in the scattering amplitude (36) there
corresponds an exponentially evolving Gamow ket in (37) and if there is more than
one Gamow ket in (37) (e.g., in the neutral Kaon system) one has an interference
term in the decay rate. But, depending upon the preparation of thejstatme
can also have a background vec#d¥® (related to the backgroung(E) in (4)).

This vectorg®? does not evolve exponentially in time.

The Weisskopf-Wigner approximation (omitting the energy continuum) re-
sults in a superposition of a finite number of Breit—-Wigner in (36) and a superpo-
sition of a finite number of corresponding Gamow vectors in (37), each term in

"This paper uses finite complex effective Hamiltonian omitting the backgrq)ﬂ?ldnd/orbj ().
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(37) having a corresponding term in (36). There is ample experimental evidence
for the interference terms following from these superpositions (Betidb, 1957;
Bollini et al, 1996; Ferreira, 1989; Kukuliet al, 1989; Leect al, 1957; Nathan,
1975; Tolstikhinet al, 1998; Verteset al,, 1989; von Brentano, 19986)

6. DISCUSSION AND CONCLUSIONS

Intraditional quantum theory there is no possibility for a precise mathematical
representation ofesonanceand/ordecayingstate. Some physicists—especially
in relativistic particle physics—therefore doubt the usefulness of considering a
guasistable particle as autonomous entity, as one does for stable states. Aresonance
is considered as a complicated phenomenon that cannot be idealized as a single
physical object.

The practice is, however, quite different. Resonances are classified in the same
way as stable states, except thatin place of the erigrgyr masaM for relativistic
particles, one uses two numbeEg( I') or (M, '), wherel is determined experi-
mentally by a fit to the line shape (4). Decaying particles are also characterized by
two numbers Eg, t) or (M, t) wheret is determined experimentally by a fit to
the exponential decay rate (5). Stable particles are quantum states fomwhich
or T = oo and decaying particles are resonances with long lifetite/ I".

The theoretical methods by which one establishes the connection between
lifetime r and widthr", (the Weisskopf-Wigner methods) are approximate. By some
complicated calculations one can derive (Goldberger and Watson, 1964) for the
decay probability of aresonandg,(I") an exponential decay law with a lifetime
h/T'; but this involves various assumptions, uses undefined mathematics and the
decay probability is only nearly equal to the exponential because, a “second” term
has to be omitted (Goldberger and Watson, 1964, chap. 8, Eq. (116)). The problem
thus is to isolate the resonance term from a second term in the scattering amplitude
in such a way that the resonance term describes the resonance per se; the second
term then is the nonresonant background (if there are no other resonance poles
or singularities in the partial wave). This is accomplished by the choice of the
“exact” Breit—-Wigner in (32). Similarly, from the state veciprone isolates the
Gamow vector (31) and attributes the deviations from the exponential law to the
backgroundp®. In the same way as one makes the idealization of an isolated
stable state, we make the idealization of a quasi-stable state, which in the scattering
experiment is the resonance per se represented by the exact Breit—Wigner of (32).
This is according to (28) and (30) ti@matrix definition of a resonance by a
first-order pole atgr = Eg — iI'/2, it leads to the “ideal” Gamow vector of (32).

This vector has a long tradition (Gamow, 1928jegert, 1939; Thomson, 1884)

8See footnote 7.
9 Complex eigenfunctions have been used earlier for transient modes of an electromagnetic filed.
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and a mathematically bad reputation, worse than the Dirac ket. But it makes good
sense a functional on the Hardy space.

The choice of the parameterization of the scattering amplitude is important for
the definition of resonance mass and width. Choosing for the scattering amplitude
(4a) with (4b) fixes (to a certain extent for the relativistic resonances; Kielanowski,
2003) the definition of the resonance eneEyy (or M) and the resonance width
I". For example, for ther-N resonance\ the fit to (4a) with (4b) leads to what
is called the pole position madg = 1210(1) MeV and pole position width =
100(1) MeV (Particle Data Group, 2002). In addition the Particle Data Table
(Particle Data Group, 2002) also gives what it calls the “Breit-Wigner mass and
width” M, = 1223(1) MeV,I', = 120(1) MeV which is obtained if one fits the
line shape data to the so-called “relativistic Breit—Wigner with energy-dependent
width” of the on-mass-shell renormalization scheme (Kielanowski, 2003). The
difference in these values is about $Gxperimental error (1 MeV) and the right
choice for the parameterization af(E) is significant.

The mathematical method within the traditional Hilbert space axioms of quan-
tum mechanics that came closest to defining (8) are the spectral deformation tech-
niques (Balsev, 1984; Reed and Simon, 1978). These methods have been used
for many applications in atomic and molecular physics and in quantum chem-
istry (Brandas, 1986; Reinhardt, 1982; Simon, 1978, 1979). The resonances are
described by square integrable eigenveciosé), H(0)yn(6) = z,y¥n(0), of a
non-self-adjoint Hamiltoniar (8) = U (9)(Ho + V)U ~1(8) with complex eign-
valuez,. Here the potentidl ()V U~1(8) is analytic for certain complex values
of 6. Vectors with the property (8) and (9) can then be defined by

Y& =U"Y0)yn(0). (39)

For stable states one can define state vectors as eigenvectors of the time-
independent Schdinger Eq. (8) under very specific boundary conditions (e.qg.,
the eigenstateg, of the harmonic oscillator Hamiltonian with the condition that
¢ € Schwartz space). For resonance states this is not possible, the Hamiltonian
operator and boundary conditions alone do not specify a resonance state. For
instance many analytic continuations (21) of the Lippmann-Schwinget kets
into the complex semiplan€_, |z~) € ®X fulfill (8) (and (9)) but they do not
represent resonance states.

In the complex scaling methods one uses a pair of operators, the Hamiltonian
H and the decay-interaction operawror Hy = H — V), and characterizes the
resonance state by a solution of the Lippmann-Schwinger equation. We charac-
terize the resonance state by the resonance part (Breit—-Wigner) of the scattering
amplitude or of thes-matrix.

One can also show that there is a connection between the RHS definition and
the methods of spectral deformation: in the special caseHhdtas a discrete
eigenvalueE? in the continuous spectrufE®|0 < oo} andH = Hg + AV has
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the same continuous spectrum, the eigenvdijecan change into a complex
generalized eigenvalug, of H with the property thaz, — E?° for » — 0. For
this special case (Friedrich’s model) one can show (Antoatal., 2001) that the
Gamow vectors defined as generalized eigenvectdtiswifth complex eigenvalue
z, are the same as those given by (39).

To obtain a meaningful theory of resonance and decay phenomena, one needs
a vector with the following properties:

1. It must have a Lorentzian or Breit—Wigner energy distribution.

2. It must have an exponential time evolution.

3. The parameter of the Lorentzi&hand the parameter of the exponential
7 must be related by = h/T.

The vectors which have these properties are the Gamow vectors of (32) defined by
(31) as a functional over the Hardy spakg. Such vectors cannot exist in Hilbert
space. They cannot even exist as generalized eigenvector defined as functional
over the Schwartz space, like the usual Dirac|kete ®* of (3).

The kets that one needs are suggested by the Lippmann-Schwinger equations.
The Lippmann-Schwinger kets (of which there are two kiftfs), require some
analyticity properties. We give them a mathematical meaning by defining them as
functional over the Hardy spaces of (16

|EF) € d%.

They can be analytically continuedr) € 7 forz Cf;. For(Ci one takes the
nonsingular points of the lower or upper complex semiplane of the second sheet
of the Riemann energy surface for tBematrix S}7(E).

The Gamow state vectors are associated with the singular point of the ana-
Iytically continued Lippmann-Schwinger kes™). The Gamow vector (32) rep-
resents a first-order resonance. But there could also be higher-order resonances
represented by Gamow-Jordan vectors which would correspond to higher-order
poles of theS-matrix, if they exist in nature (Antonioat al., 1998; Bohmet al,,

1997).

The Hardy space hypotheses (18) and (19), which replaces the Hilbert space
axiom (17), are the only new assumption we make in addition to the traditional as-
sumptions of quantum theory. The unified theory of resonances and decay requires
this new axiom. The new complex eigenvalue resolution (37) and the correspond-
ing expansion (36) of the scattering amplitude or S-matrix can only be obtained
if one uses the Hardy space hypotheses (18) and (19). The Weisskopf-Wigner
approximations of (37) and (36)—i.e., omitting the continuum (38) or setting
b(E) = 0—lead to the effective theories with finite complex Hamiltonian matri-
ces, which have been successfully applied in different areas of quantum physics
(Baldoet al, 1987; Bolliniet al,, 1996; Ferreira, 1989; Kukuliat al, 1989; Lee
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et al, 1957; Natharet al,, 1975; Vartseet al,, 1989; von Brentano, 1996). The
Hardy space quantum mechanics is thus the theory of which the Weisskopf-Wigner
methods are approximations, and (37) and (36) show what these approximations
mean.

The axioms of nonrelativistic timeasymmetric quantum mechanics can be
extended to a relativistic theory by an appropriate extension of the Hardy space
axiom into the relativistic domain. There the hypotheses (18) and (19) will lead
to new predictions. This relativistic theory of resonance scattering and decay, in
which the time evolution semigroup is generalized to the causal Peirsesmni-
group (Bohm, 2003), will be discussed in an other contribution to this volume
(Kielanowski, 2003).

APPENDIX: RIGGED HILBERT SPACES

RHSs, also called Gelfand triplets, are triplets of linear spaces, which differ
from each other by their topology. In other words the meaning of convergence is
different for each space, which implies that the limit points of converging sequences
are different in the three spaces that make up the Gelfand triplet. The three spaces
have properties which a physicist would call a Hilbert space but only one of them
is a Hilbert space by the mathematical definition, i.e., it is complete with respect
to the Hilbert space convergence.

One starts with a linear scalar product space denotedigy(also called a
pre-Hilbert space). The subscript (alg) refers to the algebraic operations that one
can perform in them, namely linear superpositions and the scalar product. The
three spaces that form the RHS, denoted by

®CHC DX, (A1)

are obtained by completing the purely algebraic sphggwith respect to three
different topologies, i.e., three definitions of convergence. To obtain each space,
one adjoins tob,yq the limit elements of Cauchy sequences, but one uses three
differentmeanings of convergence and thus obtains three different complete spaces.
The space with a stronger topology, i.e., a stronger definition of convergence is
dense in the space with a weaker topology. The Hilbert spai® obtained by
completing® g with respect to the norm, denoted by. The space is obtained

by completing®aq with respect to a stronger topology than, denoted byre.

The third spacep ™, is the space of continuous antilinear functionalen @,

[F):¢p e ®— F(p) = (p|F) e C. (A2)

Thus one obtains the triplet of spaces, or an RHS (Al).
In the Hilbert space, there is a one-to-one correspondence between elements
of the space of antilinear functionalts* and elements df{, thus one can identify
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them with each other:
H=H*. (A3)

According to the Frechet—-Riesz theorem, for evefy € H* there is anf ¢
‘H such thatf (¢) = (¢| f) = (¢, ) for all ¢ € H. The functional(¢|F) is an
extension of the scalar produet,(f) to those|F) € ®* which are not irfH.

Let A be a linear operator i, continuous with respect te,, and Af its
adjoint in{. To the triplet of spaces (A1) corresponds a triplet of operators

A: Aty c Al c A%, (A4)

where Af is the Hilbert space adjoint oA and Af |4, its restriction to®. If A

is a continuous operator with respect#g, it need not be, and in general is

not a continuous (bounded) operatortn We shall only considers-continuous

operators. So far the restriction to continuous operator® imas proven to be

sufficient for guantum physics, whereag-continuous operators are not sufficient

(e.g., the position and/or momentum operators cannot be an continuous operators

in H, neither can the generators of unitary representations of noncompact groups).
The conjugate operatoAx, of the t4- continuouslinear operatorA is a

continuous linear operator i defined by

(Ap|F) = (¢p| AX|F) V¢ € ® and VF € &*. (A5)
It is a unique extension of the Hilbert Space adjoint operator
(Ap, f) = (¢, AT|f) for ¢, feM. (AB)

A vector F € ®* is called a generalized eigenvector of the continuous
operatorA if for somew € C

(ApIF) = (#|A*|F) = w(d|F). (A7)

This is also written a®\*|F) = w|F), or as Dirac didA|F) = w|F) for Hermi-

tian A. An example of generalized eigenvectors are the Dirac kets. Their eigenval-
ues belong to the continuous spectrum of a self-adjdind *|E) = E|E), 0 <

E < o0.

Kets (and allF € ®*) depend on the choice for the spabeDirac kets are
usually defined withb as the Schwartz spa&i.e., the space of smooth, rapidly
decreasing wave functiogg E) = (E|¢).

The triplet of function spaces

Sc L?c s, (A8)

whereSis the space of smooth rapidly decreasing functionslahi the space
of Lebesgue square-integrable functions with scalar product given by the integral

(W 9) = /_OO dEV(E)H(E) = /_m dE(y|E)(El). (A9)
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is an example of an RHS. It is called a realization of the abstract Schwartz—RHS
d CHCPY, (A10)

whose vectorg, ¢ € @ are the vectors for which the Dirac basis vector expansion

. f dE|E)(El) (A11)

(omitting the arbitrary, € ® from (A9)) holds.

The integrals in (A9) can always be chosen as Riemann integrg)gife @,

i.e., v (E), ¢(E) € Sand we shall do so. The integral for the scalar produttin
however, must be a Lebesgue integral since the space of Riemann square integrable
functions cannot be a complete Hilbert space.

The spaceb that together witti{ form an RHS cannot be an arbitrary topo-
logical space. The topology, must fulfill certain additional conditions (e.g.,
nuclearity) in order that Dirac’s basis vector expansion (Al11) can be proven as
the nuclear spectral theorem. These additional requiremenrdsane part of the
definition of every RHS (A1). The Dirac basis vector expansion (A11) is the most
important theorem for quantum mechanics; even before its proof, it had been used
profusely in quantum theory. In this paper it appears in (14), (15), and (28).

Examples of other RHSs besides the Schwartz—RHS (A8) are the Hardy—
RHSs. There are two Hardy—RHSs denoted

. CHCD, (A12)
d_ CHC X, (A13)

and realized by the function spaces
SNH2|r, C LAR:) C (SNHZIR,)™, (A14)
SNH2 |, C LA(Ry) C (SNHAIR,)%, (A15)

respectively.

Here the Hilbert spacd,?(R,), is the space of Lebesgue square integrable
functions on the positive real lifg, , andH2 N Slr, denotes the smooth rapidly
decreasing functiong*(E), E € R, which can be analytically continued into
the upper half (fof{2) and the lower half (fof{2) complex energy plane. More
precisely, they T(E), E € H2 N S|k, are the boundary values of smooth analytic
functions in the lower+) and upper+{) complex half plane that decrease suffi-
ciently fast at the infinite semicircle (for the definition, see [35] Appendix). We
call the space® .. and their realizatiort2 N Slr, Hardy spaces. One can show
that these function spaces (A14), (A15), also form an RHS [34]. The Hardy—RHSs
are needed if one wants to consider generalized eigenvectors of the Hamiltonian
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H belonging to the continuous spectrum
H*|E*) = EIE*) 0<E < (A16)

and fulfilling outgoing ) and incoming 4) boundary conditions (e.g., the solu-
tions of the Lippmann-Schwinger equations). For these generalized eigenvectors,
we havelE*) o but| E*) are not elements of the dual of the Schwartz space
&>, There are many other examples of generalized vectors that @re &md not

in ®*. For example, the generalized eigenvectors of the self-adjoint Hamiltonian
H with complex eigenvalue, the Gamow vectors

H*|Eg —il/27) = (Er —iT/2)|[Eg —i[/27), (A17)

are elements ob’, but not elements ib>.
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